下列命题中,真命题是( )
A.对角线互相垂直的梯形是等腰梯形
B.对角线互相垂直的平行四边形是正方形
C.对角线平分一组对角的平行四边形是菱形
D.对角线平分一组对角的梯形是直角梯形
C
【分析】
利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.
【详解】
A.对角线互相垂直且相等的梯形是等腰梯形,故错误;
B.对角线相等且互相垂直的平行四边形是正方形,故错误;
C.对角线平分一组对角的平行四边形是菱形,正确;
D.对角线平分一组对角的梯形是菱形,故错误.
故选:C.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
登录并加入会员可无限制查看知识点解析