如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.
【考点】平行四边形的判定与性质.
【分析】(1)根据已知和角平分线的定义证明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根据两组对边分别平行的四边形是平行四边形证明即可;
(2)设BF=x,根据勾股定理求出x的值,再根据勾股定理求出AF,根据AC=2AF得到答案
【解答】(1)证明:∵AE⊥AC,BD垂直平分AC,
∴AE∥BD,
∵∠ADE=∠BAD,
∴DE∥AB,
∴四边形ABDE是平行四边形;
(2)解:∵DA平分∠BDE,
∴∠BAD=∠ADB,
∴AB=BD=5,
设BF=x,
则52﹣x2=62﹣(5﹣x)2,
解得,x=,
∴AF==
,
∴AC=2AF=.
【点评】本题考查的是平行四边形的判定和性质,掌握平行四边形的判定定理和性质定理以及勾股定理是解题的关键.
平行四边形的性质:
主要性质
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等分。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
登录并加入会员可无限制查看知识点解析