下列计算正确的是( )
A .( 2 a 2 ) 3 = 6 a 6 B . a 8 ÷ a 2 = a 4
C . = 2 D .( x ﹣ y ) 2 = x 2 ﹣ y 2
C
【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;
【详解】解: A. ( 2 a 2 ) 3 =8 a 6 ≠6 a 6 ,故错误;
B. a 8 ÷ a 2 = a 6 ≠ a 4 ,故错误;
C. =2 ,故正确;
D. ( x ﹣ y ) 2 = x 2 ﹣ 2 xy + y 2 ≠ x 2 ﹣ y 2 ,故错误;
故选: C .
【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘。
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
登录并加入会员可无限制查看知识点解析