在一张复印出来的纸上,一个三角形的一条边由原图中的 2cm 增加了 4cm ,则复印出的三角形的周长是原图中三角形周长的( )
A . 3 倍 B . 6 倍 C . 9 倍 D . 12 倍
A
【分析】复印前后的三角形按照比例放大与缩小,因此它们是相似三角形,本题按照相似三角形的性质求解.
【详解】解:由题意可知,相似三角形的边长之比=相似比= 2 :( 4+2 )= 1 : 3 ,
所以周长之比=相似比= 1 : 3 ,
所以复印出的三角形的周长是原图中三角形周长的 3 倍.
故选: A .
【点睛】本题考查相似三角形的性质,相似三角形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方,熟记相似三角形的性质是解题的关键.
相似三角形的判定:
1.基本判定定理
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:
(1).两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
(2).两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
(3).两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似)
(4).直角三角形中由斜边的高形成的三个三角形。
登录并加入会员可无限制查看知识点解析