下载试题
当前位置:
学科首页
>
九上 第二十二章 二次函数
>
二次函数与一元二次方程
>
试题详情
难度:
使用次数:173
更新时间:2021-05-11
纠错
1.

我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数,其图像上关于原点对称的两点叫做一对“H,根据该约定,完成下列各题

1)在下列关于x的函数中,是“H函数的,请在相应题目后面的括号中打“√”,不是“H函数的打“×”

         ②        ③  

2)若点与点关于x“H函数y=ax2+bx+c(a0)的一对“H,且该函数的对称轴始终位于直线的右侧,求的值域或取值范围;

3)若关于x“H函数abc是常数)同时满足下列两个条件:,求该H函数截x轴得到的线段长度的取值范围.

查看答案
题型:解答题
知识点:二次函数与一元二次方程
下载试题
复制试题
【答案】

1×;(2-1a0b=40c0;(322

【解析】

1)根据“H函数的定义即可判断;

2)先根据题意可求出m,n的取值,代入y=ax2+bx+c(a0)得到a,b,c的关系,再根据对称轴在x=2的右侧即可求解;

3)设“H为(p,q)和(-p,-q,代入得到ap2+3c=0,2bp=q,得到a,c异号,再根据a+b+c=0,代入求出的取值,设函数与x轴的交点为(x1,0)(x2,0),t=,利用根与系数的关系得到=,再根据二次函数的性质即可求解.

【详解】

1 “H函数”② “H函数”③不是 “H函数

故答案为:×

2)∵A,B“H

∴A,B关于原点对称,

m=4,n=1

∴A(1,4),B-1-4

代入y=ax2+bx+c(a0)

解得

该函数的对称轴始终位于直线的右侧,

-2

-2

-1a0

∵a+c=0

∴0c0

综上,-1a0b=40c0

3)∵“H函数

H点为(p,q)和(-p,-q,

代入得

解得ap2+3c=0,2bp=q

p20

∴a,c异号,

ac0

∵a+b+c=0

∴b=-a-c

c24a2

4

-22

-20

t=,则-2t0

设函数与x轴的交点为(x1,0)(x2,0

x1, x2是方程=0的两根

=

=

=

=2

=

∵-2t0

22

【点睛】

此题主要考查二次函数综合,解题的关键是熟知待定系数法、二次函数的性质及根与系数的关系.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 一元二次方程根的判别式 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 一元二次方程根的判别式的定义
根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
◎ 一元二次方程根的判别式的知识扩展
1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
3、根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的特性
根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的教学目标
1、能用b2-4ac的值判断一元二次方程根的情况。
2、用公式法解一元二次方程的过程中,进一步理解代数式b2-4ac对根的情况的判断作用。
3、在理解根的判别式的推导过程中,体会严密的思维过程。
◎ 一元二次方程根的判别式的考试要求
能力要求:掌握
课时要求:80
考试频率:常考
分值比重:4

登录并加入会员可无限制查看知识点解析

类题推荐:
二次函数与一元二次方程
难度:
使用次数:113
更新时间:2009-03-15
加入组卷
题型:选择题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
难度:
使用次数:106
更新时间:2009-03-15
加入组卷
题型:填空题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户李朝阳分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利