在矩形ABCD中,E为上的一点,把
沿AE翻折,使点D恰好落在BC边上的点F.
(1)求证:
(2)若,求EC的长;
(3)若,记
,求
的值.
(1)证明过程见解析;(2);(3)
.
【解析】
(1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;
(2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到,从而求出EC的长;
(3)根据△ABF∽△FCE,得到∠CEF=∠BAF=,所以tan
+tan
=
,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到
,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan
+tan
=
即可.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∴∠AFB+∠BAF=90°,
∵△AFE是△ADE翻折得到的,
∴∠AFE=∠D=90°,
∴∠AFB+∠CFE=90°,
∴∠BAF=∠CFE,
∴△ABF∽△FCE.
(2)解:∵△AFE是△ADE翻折得到的,
∴AF=AD=4,
∴BF=,
∴CF=BC-BF=AD-BF=2,
由(1)得△ABF∽△FCE,
∴,
∴,
∴EC=.
(3)
解:由(1)得△ABF∽△FCE,
∴∠CEF=∠BAF=,
∴tan+tan
=
,
设CE=1,DE=x,
∵,
∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
∵△ABF∽△FCE,
∴,
∴,
∴,
∴,
∴,
∴x2-4x+4=0,
解得x=2,
∴CE=1,CF=,EF=x=2,AF= AD=
=
,
∴tan+tan
=
=
.
【点睛】
本题考查了相似三角形的判定与性质,翻折变换,矩形的性质,勾股定理等知识.解题的关键是灵活运用所学知识解决问题,学会运用方程的思想思考问题.
相似三角形的判定:
1.基本判定定理
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:
(1).两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
(2).两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
(3).两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似)
(4).直角三角形中由斜边的高形成的三个三角形。
登录并加入会员可无限制查看知识点解析