现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.
【解析】
求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.
【详解】
五根木棒,任意取三根共有10种情况:
3、5、8
3、5、10
3、5、13
3、8、10
3、8、13
3、10、13
5、10、13
5、8、10
5、8、13
8、10、13
其中能组成三角形的有:
①3、8、10,由于8-3<10<8+3,所以能构成三角形;
②5、10、13,由于10-5<13<10+5,所以能构成三角形;
③5、8、10,由于8-5<10<8+5,所以能构成三角形;
④8、10、13,由于10-8<13<10+8,所以能构成三角形;
所以有4种方案符合要求,
故能构成三角形的概率是P==
,
故答案为:.
【点睛】
此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.
登录并加入会员可无限制查看知识点解析