如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM翻折得到△BFM.连接DF、CF,则DF+FC的最小值为_________.
.
【分析】取BG=,连接FG,首先证明△BGF∽△BFC,从而可得到FG=
FC,然后依据三角形的三边关系可知DF+
FC=DF+FC≤DG,然后依据勾股定理求得DG的值即可.
【解答】解:如图所示:取BG=,连接FG.
∵BC=2,E是BC的中点,
∴BE=1.
由翻折的性质可知BF=BE=1.
∵BF=1,BC=2,GB=,
∴BF2=BC•GB.
∴.
又∵∠FBG=∠FBC,
∴△BGF∽△BFC,
∴=
=
,
∴FG=FC.
∴DF+FC=DF+FC≤DG=
=
=
.
∴DF+FC的最小值为
.
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
登录并加入会员可无限制查看知识点解析