如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.
(1)求证:BE=BF;
(2)若∠ABE=20°,求∠BFE的度数;
(3)若AB=6,AD=8,求AE的长.
解:(1)由题意得∠BEF=∠DEF.∵四边形ABCD为矩形,∴DE∥BF,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BE=BF (2)∵四边形ABCD为矩形,∴∠ABF=90°;而∠ABE=20°,∴∠EBF=90°-20°=70°;又∵∠BEF=∠BFE,∴∠BFE的度数为55° (3)由题意知BE=DE;设AE=x,则BE=DE=8-x,由勾股定理得(8-x)2=62+x2,解得x=,即AE的长为
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
登录并加入会员可无限制查看知识点解析