如图,已知正方形ABCD,点E是BC上一点,
以AE为边作正方形AEFG。
(1)连结GD,求证△ADG≌△ABE;
(2)连结FC,求证∠FCN=45°;
(3)请问在AB边上是否存在一点Q,
使得四边形DQEF是平行四边形?
若存在,请证明;若不存在,请说明理由。
1)如图,连接DG
∵四边形ABCD和四边形AEFG是正方形
∴DA=BA,EA=GA,∠BAD=∠EAG=90°
∴∠DAG=∠BAE
∴△ADG≌△ABE;
(2)过F作BN的垂线,设垂足为H
∵∠BAE+∠AEB=90°,∠FEH+∠AEB=90°
∴∠BAE=∠HEF
∵AE=EF
∴△ABE≌△EHF
∴AB=EH,BE=FH
∴AB=BC=EH
∴BE+EC=EC+CH
∴CH=BE=FH
∴∠FCN=45°;
(3)在AB上取AQ=BE,连接QD
∵AB=AD
∴△DAQ≌△ABE
∵△ABE≌△EHF
∴△DAQ≌△ABE≌△ADG
∴∠GAD=∠ADQ
∴AG、QD平行且相等
又∵AG、EF平行且相等
∴QD、EF平行且相等
∴四边形DQEF是平行四边形
∴在AB边上存在一点Q,使得四边形DQEF
是平行四边形.
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
登录并加入会员可无限制查看知识点解析