下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对
角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是
轴对称图形又是中心对称图形.其中真命题共有【 】
A.1个 B.2个 C.3个 D.4个
B。
【考点】真假命题,平行四边形的判定,正方形的判定,菱形的判定,轴对称图形和中心对称图形。
【分析】根据平行四边形的判定,正方形的判定,菱形的判定和轴对称图形、中心对称图形的概念逐一作出判断:
①如图,四边形ABCD中,AD∥BC,∠ADC=∠ABC,
连接BD,则
∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等)。
又∵∠ADC=∠ABC,∴∠BDC=∠ABD(等量减等量,差相等)。
∴AB∥DC(内错角相等,两直线平行)。
∴四边形ABCD是平行四边形(平行四边形定义)。因此命题①正确。
②举反例说明,如图,铮形对角线互相垂直且相等。因此命题②错误。
③如图,矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,
连接AC,BD。
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF=AC,HG=
AC,EF=
BD,FG=
BD(三角形中位线定理)。
又∵矩形ABCD,∴AC=BD(矩形的对角线相等)。
∴EF=HG=EF=FG(等量代换)。
∴四边形EFGH是菱形(四边相等的辊边形是菱形)。因此命题③正确。
④根据轴对称图形和中心对称图形的概念,正五边形是轴对称图形,不是中心对称图形。因此命题④错误。
综上所述,正确的命题即真命题有①③。故选B。
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
登录并加入会员可无限制查看知识点解析