下载试题
当前位置:
学科首页
>
九上 第二十二章 二次函数
>
二次函数与一元二次方程
>
试题详情
难度:
使用次数:123
更新时间:2011-03-07
纠错
1.

    如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点AC分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点ABD.

1)求抛物线的解析式.  

2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同

时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动. S=PQ2(cm2)

①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;

②当S时,在抛物线上是否存在点R,使得以PBQR为顶点的四边形是平行四边形如果存在,求出R点的坐标;如果不存在,请说明理由

3)在抛物线的对称轴上求点M,使得MDA的距离之差最大,求出点M的坐标.

查看答案
题型:综合题
知识点:二次函数与一元二次方程
下载试题
复制试题
【答案】

: (1)据题意知: A(0, 2), B(2, 2) D4,—

                                  解得                    

     抛物线的解析式为:  …… 3分(三个系数中,每对1个得1分)

  (2) 由图象知: PB=22t, BQ= t, S=PQ2=PB2+BQ2=(22t)2 + t2 ,

S=5t28t+4 (0t1)   …… 2分(解析式和t取值范围各1分)

假设存在点R, 可构成以PBRQ为顶点的平行四边形.

S=5t28t+4 (0t1),  S=,  5t28t+4=, 20t232t+11=0,

解得 t = t = (不合题意,舍去) …… 2

此时点 P的坐标为(1-2),Q点的坐标为(2,—

R点存在,分情况讨论:

A】假设RBQ的右边, 这时QRPB, 则,R的横坐标为3, R的纵坐标为—

 R (3, ),代入, 左右两边相等,

这时存在R(3, )满足题意. …… 1

B】假设RBQ的左边, 这时PRQB, 则:R的横坐标为1, 纵坐标为(1, 代入, 左右两边不相等, R不在抛物线上. …… 1

C】假设RPB的下方, 这时PRQB, 则:R(1,—)代入,

 左右不相等, R不在抛物线上. …… 1

    综上所述, 存点一点R(3, )满足题意.

3A关于抛物线的对称轴的对称点为B,BD的直线与抛物线的对称轴的交点为所求MM的坐标为(1,—…… 2

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 一元二次方程根的判别式 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 一元二次方程根的判别式的定义
根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
◎ 一元二次方程根的判别式的知识扩展
1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
3、根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的特性
根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的教学目标
1、能用b2-4ac的值判断一元二次方程根的情况。
2、用公式法解一元二次方程的过程中,进一步理解代数式b2-4ac对根的情况的判断作用。
3、在理解根的判别式的推导过程中,体会严密的思维过程。
◎ 一元二次方程根的判别式的考试要求
能力要求:掌握
课时要求:80
考试频率:常考
分值比重:4

登录并加入会员可无限制查看知识点解析

类题推荐:
二次函数与一元二次方程
难度:
使用次数:113
更新时间:2009-03-15
加入组卷
题型:选择题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
难度:
使用次数:106
更新时间:2009-03-15
加入组卷
题型:填空题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户赵佳分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利