若收入 8 元记作 元,那么支出 10 元记作 元.
【分析】本题考查了正负数在实际生活中的应用,解题的关键是理解 “ 正 ” 和 “ 负 ” 的相对性,确定一对具有相反意义的量.本题收入记住 “ + ” ,则支出记作 “ ” ,据此即可求解.
【详解】解:如果收入 元记作 元,那么支出 元记作: 元.
故答案为: .
正数:
就是大于0的(实数)
负数:
就是小于0的(实数)
0既不是正数也不是负数。
非负数:正数与零的统称。
非正数:负数与零的统称。
正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。
2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。
登录并加入会员可无限制查看知识点解析