下载试题
当前位置:
学科首页
>
九上 第二十二章 二次函数
>
二次函数单元测试
>
试题详情
难度:
使用次数:181
更新时间:2021-07-31
纠错
1.

如图,在平面直角坐标系 中,抛物线 x 轴相交于 O A 两点,顶点 P 的坐标为 .点 B 为抛物线上一动点,连接 ,过点 B 的直线与抛物线交于另一点 C


1 )求抛物线的函数表达式;

2 )若点 B 的横坐标与纵坐标相等, ,且点 C 位于 x 轴上方,求点 C 的坐标;

3 )若点 B 的横坐标为 t ,请用含 t 的代数式表示点 C 的横坐标,并求出当 时,点 C 的横坐标的取值范围.

查看答案
题型:解答题
知识点:二次函数单元测试
下载试题
复制试题
【答案】

1 ;( 2 )点 C 的坐标为 ;( 3

【分析】

1 )设抛物线的解析式为 ,把点 O (0 0) 代入即可求解;

2 )求得 B (0 0) B (8 8) ,分两种情况讨论, 当点 B 的坐标为 (0 0) 时,过点 B BC AP 交抛物线于点 C ,利用待定系数法求得直线 BC 的解析式为 ,解方程组即可求解; B 的坐标为 (8 8) 时,作出如图的辅助线,利用三角形函数以及轴对称的性质求得 M ( ) ,同 可求解;

3 )作出如图的辅助线,点 B 的坐标为 ( t ) ,得到 AH = BH = OH = MN ,由 AH = BH = OH = MN ABH BMN 得到 M (0 ) ,求得 BC 的解析式为: ,解方程组求得点 C 的横坐标为 ,即可求解.

【详解】

1 抛物线的顶点坐标为 P (2 -1)

设抛物线的解析式为

抛物线经过原点 O ,即经过点 O (0 0)

解得:

抛物线的解析式为

2 )在 中,令

得:

解得

B (0 0) B (8 8)

当点 B 的坐标为 (0 0) 时,过点 B BC AP 交抛物线于点 C

此时 ABC =∠ OAP ,如图:


中,令

得:

解得:

A (4 0)

设直线 AP 的解析式为

A (4 0) P (2 -1) 代入得

,解得:

直线 AP 的解析式为

BC AP

设直线 BC 的解析式为

B (0 0) 代入得

直线 BC 的解析式为

得: ( 此点为点 O ,舍去 )

C 的坐标为 (6 3)

B 的坐标为 (8 8) 时,过点 P PQ 轴于点 Q ,过点 B BH 轴于点 H ,作 H 关于 AB 的对称点 M ,作直线 BM 交抛物线于 C ,连接 AM ,如图:


A (4 0) P( 2 -1)

PQ =1 AQ =2

Rt APQ 中,

A (4 0) B (8 8)

AH =4 BH =8

Rt ABH 中,

∴∠ OAP =∠ ABH

H 关于 AB 的对称点为 M

∴∠ ABM =∠ ABH

∴∠ ABC =∠ OAP ,即 C 为满足条件的点,

M ( x y )

H 关于 AB 的对称点为 M

AM = AH =4 BM = BH =8

两式相减得: ,代入即可解得:

( 此点为点 H ,舍去 )

M ( )

同理求得 BM 的解析式为:

得: ( 此点为点 B ,舍去 )

C 的坐标为 (-1 )

综上,点 C 的坐标为 (6 3) (-1 )

3 )设 BC y 轴于点 M ,过点 B BH 轴于点 H ,过点 M MN 于点 N ,如图:


B 的横坐标为 t

B 的坐标为 ( t ) ,又 A (4 0)

AH = BH = OH = MN

∵∠ ABC =90°

∴∠ MBN =90°-∠ ABH =∠ BAH

N =∠ AHB =90°

∴△ ABH BMN

,即

BN =

HN =

M (0 )

同理求得 BC 的解析式为:

,得

解得 ( B 的横坐标 ) ,或

C 的横坐标为

时,

时, 的最小值是 12 ,此时

时,点 C 的横坐标的取值范围是

【点睛】

本题考查二次函数综合知识,涉及解析式、锐角三角函数、对称变换、两条直线平行、两条直线互相垂直、解含参数的方程等,综合性很强,难度较大,解题的关键是熟练掌握、应用各种综合知识,用含字母的式子表示线段长度及函数解析式.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 求二次函数的解析式及二次函数的应用的定义
求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。

二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。
◎ 求二次函数的解析式及二次函数的应用的知识扩展
1、求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
2、二次函数的应用:(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
◎ 求二次函数的解析式及二次函数的应用的特性

二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1?x2]
=a(x-x1)(x-x2).
重要概念:
a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
a<0时,开口方向向下。a的绝对值可以决定开口大小。
a的绝对值越大开口就越小,a的绝对值越小开口就越大。
能灵活运用这三种方式求二次函数的解析式;
能熟练地运用二次函数在几何领域中的应用;
能熟练地运用二次函数解决实际问题。

◎ 求二次函数的解析式及二次函数的应用的知识对比
二次函数的其他表达形式:
①牛顿插值公式:
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
二次函数表达式的右边通常为二次三项式。

双根式
y=a(x-x1)*(x-x2)
若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

③三点式
已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)
与X轴交点的情况
当△=b2-4ac>0时,函数图像与x轴有两个交点。(x1,0), (x2,0);
当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。
Δ=b2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
◎ 求二次函数的解析式及二次函数的应用的知识点拨

二次函数解释式的求法:
就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

1.巧取交点式法:
知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。
已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
点拨:
解设函数的解析式为y=a(x+2)(x-1),
∵过点(2,8),
∴8=a(2+2)(2-1)。
解得a=2,
∴抛物线的解析式为:
y=2(x+2)(x-1),
即y=2x2+2x-4。

②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
点拨:
在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

2.巧用顶点式:
顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
点拨:
解∵顶点坐标为(-1,-2),
故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
把点(1,10)代入上式,得10=a·(1+1)2-2。
∴a=3。
∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

②典型例题二:
如果a>0,那么当 时,y有最小值且y最小=
如果a<0,那么,当时,y有最大值,且y最大=
告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

◎ 求二次函数的解析式及二次函数的应用的教学目标
1、会用待定系数法求二次函数解析式,明确一般式、顶点式、交点式的求法。
2、探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界的一个有效的数学模型,引导学生感受数学的价值。
3、会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题。
◎ 求二次函数的解析式及二次函数的应用的考试要求
能力要求:应用
课时要求:180
考试频率:必考
分值比重:8

登录并加入会员可无限制查看知识点解析

类题推荐:
二次函数单元测试
难度:
使用次数:82
更新时间:2021-07-15
加入组卷
题型:选择题
知识点:二次函数单元测试
复制
试题详情
纠错
难度:
使用次数:90
更新时间:2021-07-18
加入组卷
题型:选择题
知识点:二次函数单元测试
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户郭洪锴分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时199
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利