下载试题
当前位置:
学科首页
>
八上 第十二章 全等三角形
>
三角形全等的判定
>
试题详情
难度:
使用次数:184
更新时间:2021-05-05
纠错
1.

如图,将两个全等的直角三角形ABDACE拼在一起(图1).ABD不动,

1)若将ACE绕点A逆时针旋转,连接DEMDE的中点,连接MBMC(图2),证明:MBMC

2)若将图1中的CE向上平移,CAE不变,连接DEMDE的中点,连接MBMC(图3),判断并直接写出MBMC的数量关系.

3)在(2)中,若CAE的大小改变(图4),其他条件不变,则(2)中的MBMC的数量关系还成立吗?说明理由.

查看答案
题型:解答题
知识点:三角形全等的判定
下载试题
复制试题
【答案】

(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析

【分析】

1)连接AM,根据全等三角形的对应边相等可得AD=AEAB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用边角边证明△ABM△ACM全等,根据全等三角形对应边相等即可得证;
2)延长DBAE相交于E′,延长ECADF,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;
3)延长BMCEF,根据两直线平行,内错角相等可得∠MDB=∠MEF∠MBD=∠MFE,然后利用角角边证明△MDB△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.

【详解】

(1)如图(2),连接AM,由已知得ABD≌△ACE,

∴AD=AE,AB=AC,∠BAD=∠CAE.

∵MD=ME,

∴∠MAD=∠MAE,

∴∠MAD-∠BAD=∠MAE-∠CAE,

BAM=∠CAM.

ABMACM中,

AB=AC,

∠BAM=∠CAM,

AM=AM,

∴△ABM≌△ACM(SAS),

∴MB=MC.

(2)MB=MC.

理由如下:如图(3),延长CMDBF,延长BMG,使得MG=BM,连接CG.

∵CE∥BD,

∴∠MEC=∠MDF,∠MCE=∠MFD.

∵MED的中点,

∴MD=ME.

△MCEMFD中,

∠MCE=∠MFD,

∠MEC=∠MDF,

MD=ME,

∴△MCE≌△MFD(AAS).

∴MF=MC.

△MFBMCG中,

MF=MC,

∠FMB=∠CMG,

BM=MG,

∴△MFB≌△MCG(SAS).

∴FB=GC,∠MFB=∠MCG,

∴CG∥BD,即G、C、E在同一条直线上.

∴∠GCB=90°.

△FBCGCB中,

FB=GC,

∠FBC=∠GCB,

BC=CB,

∴△FBC≌△GCB(SAS).

∴FC=GB.

∴MB=GB=FC=MC.

(3)MB=MC还成立.

如图(4),延长BMCEF,延长CMG,使得MG=CM,连接BG.

∵CE∥BD,

∴∠MDB=∠MEF,∠MBD=∠MFE.

MDE的中点,

∴MD=ME.

MDBMEF中,

∠MDB=∠MEF,

∠MBD=∠MFE,

MD=ME,

∴△MDB≌△MEF(AAS),

∴MB=MF.

∵CE∥BD,

∴∠FCM=∠BGM.

△FCMBGM中,

CM=MG,

∠CMF=∠GMB,

MF=MB,

∴△FCM≌△BGM(SAS).

∴CF=BG,∠FCM=∠BGM.

∴CF//BG,即D、B、G在同一条直线上.

△CFBBGC中,

CF=BG,

∠FCB=∠GBC,

CB=BC,

∴△CFB≌△BGC(SAS).

∴BF=CG.

∴MC=CG=BF=MB.

【点睛】

本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 三角形全等的判定 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 三角形全等的判定的定义

三角形全等判定定理:
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

◎ 三角形全等的判定的知识扩展
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);
(4)角角边定理:两角及其中一角的对边对应相等的两个三角形全等(简称“AAS”);
(5)HL定理:斜边和直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)。
◎ 三角形全等的判定的特性

三角形全等的判定公理及推论:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
①S.S.S. (边、边、边):
各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
②S.A.S. (边、角、边):
各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
③A.S.A. (角、边、角):
各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
④A.A.S. (角、角、边):
各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
⑤R.H.S. / H.L. (直角、斜边、边):
各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
⑥A.A.A. (角、角、角):
各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
⑦A.S.S. (角、边、边):
各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
但若是直角三角形的话,应以R.H.S.来判定。

◎ 三角形全等的判定的知识点拨

解题技巧:
一般来说考试中线段和角相等需要证明全等。
因此我们可以来采取逆思维的方式。
来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。

◎ 三角形全等的判定的教学目标
1、掌握全等三角形全等的判定法;
2、能够恰当选择全等三角形的判定方法判定两个三角形全等;
3、通过画图、实验、发现、应用的过程教学,树立知识源于实践用于实践的观念,体会探索发现问题的过程。
◎ 三角形全等的判定的考试要求
能力要求:掌握
课时要求:80
考试频率:常考
分值比重:6

登录并加入会员可无限制查看知识点解析

类题推荐:
三角形全等的判定
难度:
使用次数:166
更新时间:2021-07-13
加入组卷
题型:计算题
知识点:三角形全等的判定
复制
试题详情
纠错
难度:
使用次数:111
更新时间:2009-03-15
加入组卷
题型:解答题
知识点:三角形全等的判定
复制
试题详情
纠错
难度:
使用次数:112
更新时间:2021-07-14
加入组卷
题型:解答题
知识点:三角形全等的判定
复制
试题详情
纠错
难度:
使用次数:111
更新时间:2021-07-15
加入组卷
题型:作图题
知识点:三角形全等的判定
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户小小分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利