下载试题
当前位置:
学科首页
>
九上 第二十二章 二次函数
>
二次函数与一元二次方程
>
试题详情
难度:
使用次数:122
更新时间:2020-10-30
纠错
1.

已知函数均为一次函数,m为常数.

1)如图1,将直线绕点逆时针旋转45°得到直线,直线y轴于点B.若直线恰好是中某个函数的图象,请直接写出点B坐标以及m可能的值;

2)若存在实数b,使得成立,求函数图象间的距离;

3)当时,函数图象分别交x轴,y轴于CE两点,图象交x轴于D点,将函数的图象最低点F向上平移个单位后刚好落在一次函数图象上,设的图象,线段,线段围成的图形面积为S,试利用初中知识,探究S的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)

 

查看答案
题型:综合题
知识点:二次函数与一元二次方程
下载试题
复制试题
【答案】

1)(0,1);10   (2   (3

【解析】

1)由题意,可得点B坐标,进而求得直线的解析式,再分情况讨论即可解的m值;

2)由非负性解得mb的值,进而得到两个函数解析式,设x轴、y轴交于TP分别与x轴、y轴交于GH,连接GPTH,证得四边形GPTH是正方形,求出GP即为距离;

3)先根据解析式,用m表示出点CED的坐标以及y关于x的表达式为,得知y是关于x的二次函数且开口向上、最低点为其顶点,根据坐标平移规则,得到关于m的方程,解出m值,即可得知点D    E的坐标且抛物线过DE点,观察图象,即可得出S的大体范围,如:,较小的可为平行于DE且与抛物线相切时围成的图形面积.

【详解】

解:(1)由题意可得点B坐标为(0,1),

设直线的表达式为y=kx+1,将点A(-1,0)代入得:k=1,

所以直线的表达式为:y=x+1,

若直线恰好是的图象,则2m-1=1,解得:m=1,

若直线恰好是的图象,则2m+1=1,解得:m=0,

综上,或者

2)如图,


x轴、y轴交于TP分别与x轴、y轴交于GH,连接GPTH

四边形GPTH是正方形

,即

3

分别交x轴,y轴于CE两点

图象交x轴于D

二次函数开口向上,它的图象最低点在顶点

顶点

抛物线顶点F向上平移,刚好在一次函数图象上

得到

得到与x轴,y轴交点是

抛物线经过两点

的图象,线段OD,线段OE围成的图形是封闭图形,则S即为该封闭图形的面积

探究办法:利用规则图形面积来估算不规则图形的面积.

探究过程:

①观察大于S的情况.

很容易发现

(若有S小于其他值情况,只要合理,参照赋分.)

②观察小于S的情况.

选取小于S的几个特殊值来估计更精确的S的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置:

位置一:如图

当直线MNDE平行且与抛物线有唯一交点时,设直线MNxy轴分别交于MN

直线

设直线

直线

位置二:如图

当直线DR与抛物线有唯一交点时,直线DRy轴交于点R

设直线

直线

直线

位置三:如图

当直线EQ与抛物线有唯一交点时,直线EQx轴交于点Q

设直线

直线

我们发现:在曲线DE两端位置时的三角形的面积远离S的值,由此估计在曲线DE靠近中间部分时取值越接近S的值

探究的结论:按上述方法可得一个取值范围

(备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)

【点睛】

本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 一元二次方程根的判别式 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 一元二次方程根的判别式的定义
根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
◎ 一元二次方程根的判别式的知识扩展
1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
3、根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的特性
根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的教学目标
1、能用b2-4ac的值判断一元二次方程根的情况。
2、用公式法解一元二次方程的过程中,进一步理解代数式b2-4ac对根的情况的判断作用。
3、在理解根的判别式的推导过程中,体会严密的思维过程。
◎ 一元二次方程根的判别式的考试要求
能力要求:掌握
课时要求:80
考试频率:常考
分值比重:4

登录并加入会员可无限制查看知识点解析

类题推荐:
二次函数与一元二次方程
难度:
使用次数:113
更新时间:2009-03-15
加入组卷
题型:选择题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
难度:
使用次数:106
更新时间:2009-03-15
加入组卷
题型:填空题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户阳光之舟分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利