如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④
+
<-4,正确的个数是( )
A. 1
B. 2
C. 3
D. 4
D
【解析】
解:①∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴的右侧,
∴b<0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,
∴<-
<
,
∴1<-<
,
当-<
时,b>-3a,
∵当x=2时,y=4a+2b+c=0,
∴b=-2a-c,
∴-2a-c>-3a,
∴2a-c>0,故②正确;
③∵-,
∴2a+b>0,
∵c>0,
4c>0,
∴a+2b+4c>0,
故③正确;
④∵-,
∴2a+b>0,
∴(2a+b)2>0,
4a2+b2+4ab>0,
4a2+b2>-4ab,
∵a>0,b<0,
∴ab<0,dengx
∴,
即,
故④正确.
故选:D.
二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)
③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).
本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.