甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。
16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。
0或1<AF< 或4
【考点】矩形的性质,圆周角定理,切线的性质,直角三角形的性质
【解析】【解答】解:以EF为斜边的直角三角形的直角顶点P是以EF为直径的圆与矩形边的交点,取EF的中点O,
(1)如图1,当圆O与AD相切于点G时,连结OG,此时点G与点P重合,只有一个点,此时AF=OG=DE=1;
(2)如图2,当圆O与BC相切于点G,连结OG,EG,FG,此时有三个点P可以构成Rt△EFP,
∵OG是圆O的切线,
∴OG⊥BC
∴OG//AB//CD
∵OE=OF,
∴BG=CG,
∴OG=(BF+CE),
设AF=x,则BF=4-x,OG=(4-x+4-1)=
(7-x),
则EF=2OG=7-x,EG2=EC2+CG2=9+1=10,FG2=BG2+BF2=1+(4-x)2
在Rt△EFG中,由勾股定理得EF2=EG2+FG2 , 得(7-x)2=10+1+(4-x)2,解得x=
所以当1<AF<时,以EF为直径的圆与矩形ABCD的交点(除了点E和F)只有两个;
(3)因为点F是边AB上一动点:
当点F与A点重合时,AF=0,此时Rt△EFP正好有两个符合题意;
当点F与B点重合时,AF=4,此时Rt△EFP正好有两个符合题意;
故答案为0或1<AF<或4
【分析】学习了圆周角的推论:直径所对的圆周角是直角,可提供解题思路,不妨以EF为直径作圆,以边界值去讨论该圆与矩形ABCD交点的个数