下列运算正确的是( )
A. x2•x3=x6 B. x6÷x5=x
C. (﹣x2)4=x6
D. x2+x3=x5
B
【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则和去括号法则
【解析】【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;
B、同底数幂的除法底数不变指数相减,故B正确;
C、积的乘方等于乘方的积,故C错误;
D、不是同类项不能合并,故D错误;
故答案为:B.
【分析】根据幂的性质及同类项的定义解答此题。
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘。
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
登录并加入会员可无限制查看知识点解析