下载试题
当前位置:
学科首页
>
八下 第十九章 一次函数
>
一次函数
>
试题详情
难度:
使用次数:135
更新时间:2017-10-13
纠错
1.

在平面直角坐标系xOy中,对于任意两点P1x1y1)与P2x2y2)的非常距离,给出如下定义:【版权所有:21教育】

|x1x2||y1y2|,则点P1与点P2非常距离|x1x2|

|x1x2||y1y2|,则点P1与点P2非常距离|y1y2|

例如:点P112),P135),因为|13||25|,所以点P1与点P2非常距离|25|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).21教育名师原创作品

1)已知点A(﹣),By轴上的一个动点,若点A与点B非常距离2,写出满足条件的点B的坐标;直接写出点A与点B非常距离的最小值;

2)如图2,已知C是直线上的一个动点,点D的坐标是(01),求点C与点D非常距离最小时,相应的点C的坐标.21*cnjy*com

查看答案
题型:综合题
知识点:一次函数
下载试题
复制试题
【答案】

1①∵By轴上的一个动点,

设点B的坐标为(0y).

|0|=2

|0y|=2

解得,y=2y=2

B的坐标是(02)或(0,﹣2);------------------------4

设点B的坐标为(0y).

|0||0y|

A与点B非常距离最小值为|0|= ------------------------6

2)如图2,取点C与点D非常距离的最小值时,需要根据运算定义|x1x2||y1y2|21教育网

则点P1与点P2非常距离|x1x2|解答,此时|x1x2|=|y1y2|

AC=AD                                    ------------------------8

C是直线y=x+3上的一个动点,点D的坐标是(01),

设点C的坐标为(x0x0+3),

x0=x0+2                                       ------------------------10

此时,x0=

C与点D非常距离的最小值为:|x0|=

此时C(﹣).                           ------------------------12

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 变量及函数 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 变量及函数的定义

函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

◎ 变量及函数的知识扩展
1、变量:在一个变化过程中,我们称数值发生变化的量为变量。
2、函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
◎ 变量及函数的特性
变量的关系:
在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。
◎ 变量及函数的知识点拨
函数自变量的取值范围的确定:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
自变量的取值范围的确定方法:
首先要考虑自变量的取值必须使解析式有意义,
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
◎ 变量及函数的教学目标
1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;
2、学会用含一个变量的代数式表示另一个变量;
3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;
4、会根据函数解析式和实际意义确定自变量的取值范围。
◎ 变量及函数的考试要求
能力要求:知道
课时要求:40
考试频率:选考
分值比重:2

登录并加入会员可无限制查看知识点解析

类题推荐:
一次函数
加入组卷
进入组卷
下载知识点
知识点:
版权提示

该作品由: 用户yuhong分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利