圆内接四边形ABCD中,已知∠A=70°,则∠C=( )
A.20° B.30° C.70° D.110°
D【考点】圆内接四边形的性质.
【专题】计算题.
【分析】直接根据圆内接四边形的性质求解.
【解答】解:∵四边形ABCD为圆的内接四边形,
∴∠A+∠C=180°,
∴∠C=180°﹣70°=110°.
故选D.
【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.
圆的计算公式:
1.圆的边长即的周长C=2πr=或C=πd
2.圆的面积S=πr2
3.扇形弧长L=圆心角(弧度制)· r = n°πr/180°(n为圆心角)
4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)
5.圆的直径 d=2r
6.圆锥侧面积 S=πrl(l为母线长)
7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)
8.圆心角所对的弧的度数等于弧所对的圆心角的度数;
9.圆周角的度数等于圆心角的度数的一半;
10.圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半;
11.扇形圆心角n=(180L)/(πr)(度)。
登录并加入会员可无限制查看知识点解析