下载试题
当前位置:
学科首页
>
九上 第二十二章 二次函数
>
二次函数与一元二次方程
>
试题详情
难度:
使用次数:188
更新时间:2021-05-06
纠错
1.

如图,已知在平面直角坐标系xOy中,抛物线x轴交于点A(﹣10)和点B,与y轴相交于点C03),抛物线的对称轴为直线l

1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;

2)如果直线y=kx+b经过CM两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;

3)点P在直线l上,且以点P为圆心的圆经过AB两点,并且与直线CD相切,求点P的坐标.

查看答案
题型:填空题
知识点:二次函数与一元二次方程
下载试题
复制试题
【答案】

1,对称轴为直线x=1,顶点M14);(2)证明见解析;(3P11),P21).

试题解析:(1抛物线经过点A(﹣10)和点C03),,即,对称轴为直线x=1,顶点M14);

2)如图1C关于直线l的对称点为NN23),直线y=kx+b经过CM两点,y=x+3y=x+3x轴交于点DD(﹣30),AD=2=CN

ADCNCDAN是平行四边形;

3)设P1a),过点PPHDMH,连接PAPB,如图2

MP=4a,又HMP=45°HP=AP=RtAPE中,,即:,解得:P11),P21).

考点:二次函数综合题.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 一元二次方程根的判别式 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 一元二次方程根的判别式的定义
根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
◎ 一元二次方程根的判别式的知识扩展
1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
3、根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的特性
根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
◎ 一元二次方程根的判别式的教学目标
1、能用b2-4ac的值判断一元二次方程根的情况。
2、用公式法解一元二次方程的过程中,进一步理解代数式b2-4ac对根的情况的判断作用。
3、在理解根的判别式的推导过程中,体会严密的思维过程。
◎ 一元二次方程根的判别式的考试要求
能力要求:掌握
课时要求:80
考试频率:常考
分值比重:4

登录并加入会员可无限制查看知识点解析

类题推荐:
二次函数与一元二次方程
难度:
使用次数:113
更新时间:2009-03-15
加入组卷
题型:选择题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
难度:
使用次数:106
更新时间:2009-03-15
加入组卷
题型:填空题
知识点:二次函数与一元二次方程
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
使用过本题的试卷:
版权提示

该作品由: 用户李额分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利