下载试题
当前位置:
学科首页
>
八下 第十九章 一次函数
>
课题学习 选择方案
>
试题详情
难度:
使用次数:145
更新时间:2021-05-11
纠错
1.

如图,已知一次函数y1=m2x+2与正比例函数y2=2x图象相交于点A2n),一次函数y1=m2x+2x轴交于点B

1)求mn的值;

2)求ABO的面积;

3)观察图象,直接写出当x满足   时,y1y2

查看答案
题型:解答题
知识点:课题学习 选择方案
下载试题
复制试题
【答案】

【分析】(1)先把A点坐标代入正比例函数解析式求出n,从而确定A点坐标,然后利用待定系数法确定m的值;

2)由一次函数y1=x+2求得B的坐标,然后根据三角形面积公式求得即可;

3)根据函数的图象即可求得.

【解答】解:(1)把点A2n)代入y2=2xn=2×2=4,则A点坐标为(24),

A24)代入y1=m2x+2得,4=m2×2+2

解得m=3

2m=3

y1=x+2

y=0,则x=2

B(﹣20),

A24),

∴△ABO的面积=×2×4=4

3)由图象可知:当x2时,y1y2

故答案为x2

【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1k10)和直线y=k2x+b2k20)平行,则k1=k2;若直线y=k1x+b1k10)和直线y=k2x+b2k20)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.

 

=
类题推荐:
课题学习 选择方案
加入组卷
进入组卷
下载知识点
版权提示

该作品由: 用户赵雷分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利