适合下列条件的△ABC中,直角三角形的个数为( )
①a=3,b=4,c=5;
②a=6,∠A=45°;
③a=2,b=2,c=2;
④∠A=38°,∠B=52°.
A.1个 B.2个 C.3个 D.4个
C【考点】勾股定理的逆定理.
【分析】根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”或“有一个角是直角”,由此即可得出结论.
【解答】解:①a=3,b=4,c=5,
∵32+42=25=52,
∴满足①的三角形为直角三角形;
②a=6,∠A=45°,
只此两个条件不能断定三角形为直角三角形;
③a=2,b=2,c=2,
∵22+22=8=,
∴满足③的三角形为直角三角形;
④∵∠A=38°,∠B=52°,
∴∠C=180°﹣∠A﹣∠B=90°,
∴满足④的三角形为直角三角形.
综上可知:满足①③④的三角形均为直角三角形.
故选C.
【点评】本题考查了勾股定理的逆定理以及直角三角形的定义,解题的关键是根据勾股定理的逆定理和直角三角形的定义验证四组条件.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方(或寻找三角形中是否有一个角为直角)”是关键.
勾股定理的逆定理:
如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。
勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2<c2,则△ABC是钝角三角形。
由于余弦定理是由勾股定理推出的,故可以用来证明其逆定理而不算循环论证。
勾股定理的逆定理是判定三角形是不是直角三角形的重要方法。
登录并加入会员可无限制查看知识点解析