某年北京与巴黎的年降水量都是630毫米,它们的月降水量占全年降水量百分比如下表:
(1)计算两个城市的月平均降水量;
(2)写出两个城市的年降水量的众数和中位数;
(3)通过观察北京与巴黎两个城市的降水情况,用你所学的统计知识解释北京地区干旱与缺水的原因.
月 份 | 北 京 | 巴 黎 |
1 | 0.5% | 6.7% |
2 | 0.9% | 5.8% |
3 | 1.2% | 6.7% |
4 | 3.0% | 7.8% |
5 | 5.4% | 8.8% |
6 | 12.3% | 9.4% |
7 | 33.5% | 9.4% |
8 | 30.3% | 9.0% |
9 | 7.8% | 9.0% |
10 | 3.0% | 9.9% |
11 | 1.5% | 9.0% |
12 | 0.6% | 8.5% |
解:(1)两个城市的月平均降水量毫米;
(2)北京降水量的众数是3%×630=18.9毫米;
巴黎的降水量众数是9%×630=56.7毫米;
北京的降水量的中位数是3%×630=18.9毫米;
巴黎的降水量的中位数是8.9%×630=56.07毫米;
(3) 根据众数、中位数的比较,以及表中看出北京在7、8两个月份的降水量最高,其它月份降水量相对很低,特别是春冬季的降水量更少, 这样导致 7、8两个月份的降水量过于集中,流失过大,而其它月份降水量很少,这就是造成北京每年干旱和缺水的主要原因.
平均数、中位数和众数异同:
一、相同点
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点
它们之间的区别,主要表现在以下方面。
1、定义不同
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同
平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同
在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众 数:是一组数据中的原数据 ,它是真实存在的。
5、代表不同
平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。
7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。
登录并加入会员可无限制查看知识点解析