如图,已知平行四边形ABCD及四边形外一直线,四个顶点A、B、C、D到直线的距离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.
(2)现将向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.
(1).
证明:连结AC、BD,且AC、BD相交于点O,OO0为点O到的距离,
∴OO1为直角梯形BB1D1D的中位线 ,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴.
(2)不一定成立.
分别有以下情况:
直线过A点时,;
直线过A点与B点之间时,;
直线过B点时,;
直线过B点与D点之间时,;
直线过D点时,;
直线过C点与D点之间时,;
直线过C点时,;
直线过C点上方时,.
梯形性质:
①梯形的上下两底平行;
②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
③等腰梯形对角线相等。
梯形判定:
1.一组对边平行,另一组对边不平行的四边形是梯形。
2.一组对边平行且不相等的四边形是梯形。
梯形中位线定理:
梯形中位线平行于两底,并且等于两底和的一半。
梯形中位线×高=(上底+下底)×高=梯形面积
梯形中位线到上下底的距离相等
中位线长度=(上底+下底)
梯形的周长与面积:
梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
变形1:h=2s÷(a+b);
变形2:a=2s÷h-b;
变形3:b=2s÷h-a。
另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
对角线互相垂直的梯形面积为:对角线×对角线÷2。
梯形的分类:
等腰梯形:两腰相等的梯形。
直角梯形:有一个角是直角的梯形。
等腰梯形的性质:
(1)等腰梯形的同一底边上的两个角相等。
(2)等腰梯形的对角线相等。
(3)等腰梯形是轴对称图形。
等腰梯形的判定:
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
登录并加入会员可无限制查看知识点解析