为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了统计表和统计图:
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | 0 | ||
乙 | 1 |
(1)请补全上述图表(直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
(1)甲、乙射击成绩统计表
(2)甲
(3)希望乙胜出,规则为命中9环与10环的总数大的胜出.因为乙命中9环与10环的总数为3次,而甲只命中2次.
【解析】
(1)根据折线统计图得乙的射击成绩为2,4,6,7,7,8,8,9,9,10,则平均数为,中位数为7.5,方差为
×[(2-7)2+(4-7)2+(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4;
由表知甲的射击成绩的平均数为7,则甲第8次射击成绩为70-(9+6+7+6+5+7+7+8+9)=6(环),故10次射击成绩为5,6,6,6,7,7,7,8,9,9,中位数为7,方差为×[(5-7)2+(6-7)2+(6-7)2+(6-7)2+(7-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2]=1.6,补全图表如下:
甲、乙射击成绩统计表
(2)因为两人射击成绩的平均数相同,但甲的方差小于乙的方差,故甲胜出.
(3)希望乙胜出,规则为命中9环与10环的总数大的胜出.因为乙命中9环与10环的总数为3次,而甲只命中2次.
【难度】困难
极差:
全距,又称极差,是用来表示统计资料中的变异量数,其最大值与最小值之间的差距;
即最大值减最小值后所得之数据。
极差是指总体各单位的标志值中,最大标志值与最小标志值之差。它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。
极差特点:
刻画数据离散程度的最简单的统计量;
计算简单;
不能反映中间数据的分散状况。
极差用途:
在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。
登录并加入会员可无限制查看知识点解析