某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.
(1)求y2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
解:(1)由图可知,y2=mx2﹣8mx+n经过点(3,6),(7,7),
∴,
解得.
∴y2=x2﹣x+(1≤x≤12);
(2)设y1=kx+b(k≠0),
由图可知,函数图象经过点(4,11),(8,10),
则,
解得,
所以,y1=﹣x+12,
所以,每千克所获得利润=(﹣x+12)﹣(x2﹣x+)
=﹣x+12﹣x2+x﹣
=﹣x2+x+
=﹣(x2﹣6x+9)++
=﹣(x﹣3)2+,
∵﹣<0,
∴当x=3时,所获得利润最大,为元.
答:第3月销售这种水果,每千克所获得利润最大,最大利润是元/千克.
登录并加入会员可无限制查看知识点解析