如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是
A. B.
C.
D.
D
【解析】
试题分析:应用特殊元素法和排他法进行分析:
当点P运动到点B时,如图1,
作AB边上的高MH,
∵AB=2,BC=4,AD=6,M是CD的中点,
∴MH是梯形的中位线。∴MH=。
∴△APM的面积=。
∴当x=2时,y=5。从而可排除A,B选项。
当点P运动到点C时,如图2,
分别作△ACD和△AMD的AD边H的高CE和MF,
∵AB=2,BC=4,AD=6,M是CD的中点,
∴MF是△CDE的中位线。∴MF=。
∴△APM的面积。
∴当x=6时,y=3。从而可排除C选项。
故选D。
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
登录并加入会员可无限制查看知识点解析