实数的平方根是( )
A.±3 B. C.﹣3 D.3
B
【分析】
直接利用平方根的定义计算即可得到答案.
【详解】
解:∵,
的平方是3,
∴的平方根是
.
故选:B.
【点睛】
此题主要考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.
实数a、b在数轴上的位置如图,则等于
A.2a B.2b C. D.
A
【详解】
根据实数a、b在数轴上的位置得知:
a<0,b>0,a+b>0, a﹣b<0
∴|a+b|=a+b,|a﹣b|=b﹣a,
∴|a+b|-|a﹣b|=a+b-b+a=2a,
故选A.
在-,0,-|-5|,-0.6,2,
,-10中负数的个数有( )
A.3 B.4 C.5 D.6
B
【分析】
先化简,再根据负数的定义判断即可.
【详解】
--|-5|=-5是负数,-0.6是负数,-10是负数,故负数为4个.
【点睛】
本题考查负数的判断,解题的关键是清楚负数的定义.
在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )
A. B.
C. D.
C
【解析】
试题分析:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;
选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.
考点:1一次函数图像;2二次函数图像.
已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )
A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
A
【解析】
分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
∴4=|2a+2|,a+2≠3,
解得:a=−3,
故选A.
点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有( )个.
A.2 B.3 C.4 D.5
A
【分析】
根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C可能不在同一直线上,所以AD+CD可能不等于AC.
【详解】
解:①∵△ADB≌△EDB,
∴∠ABD=∠EBD,
∴BD是∠ABE的平分线,故①正确;
②∵△BDE≌△CDE,
∴BD=CD,BE=CE,
∴DE⊥BC,
∴∠BED=90°,
∵△ADB≌△EDB,
∴∠A=∠BED=90°,
∴AB⊥AD,
∵A、D、C可能不在同一直线上
∴AB可能不垂直于AC,故②不正确;
③∵△ADB≌△EDB,△BDE≌△CDE,
∴∠ABD=∠EBD,∠EBD=∠C,
∵∠A=90°
若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,
∴∠C≠30°,故③不正确;
④∵△BDE≌△CDE,
∴BE=CE,
∴线段DE是△BDC的中线,故④正确;
⑤∵△BDE≌△CDE,
∴BD=CD,
若A、D、C不在同一直线上,则AD+CD>AC,
∴AD+BD>AC,故⑤不正确.
故选:A.
【点睛】
本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.
函数y=x2-2x-3中,当-2≤x≤3时,函数值y的取值范围是( )
A.-4≤y≤5 B.0≤y≤5 C.-4≤y≤0 D.-2≤y≤3
A
【解析】
试题解析:
对称轴为,开口向上.
当时,函数有最小值
当时,函数有最大值
故选A.
如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B.
C.
D.
B
【分析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=
,再证明∠BFC=90°,最后利用勾股定理求得CF=
.
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
∵,
∴,
∴BH=,则BF=
,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF==
.
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
已知关于x的不等式>1的解都是不等式
>0的解,则a的范围是( )
A. B.
C.
D.
C
【分析】
先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.
【详解】
由得,
由 得,
∵关于x的不等式的解都是不等式
的解,
∴
解得
即a的取值范围是:
故选:C.
【点睛】
考查不等式的解析,掌握一元一次不等式的求法是解题的关键.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A. B.
C.
D.
A
【分析】
先根据矩形的判定得出四边形是矩形,再根据矩形的性质得出
,
互相平分且相等,再根据垂线段最短可以得出当
时,
的值最小,即
的值最小,根据面积关系建立等式求解即可.
【详解】
解:∵,
,
,
∴,
∵,
,
∴四边形是矩形,
∴,
互相平分,且
,
又∵为
与
的交点,
∴当的值时,
的值就最小,
而当时,
有最小值,即此时
有最小值,
∵,
∴,
∵,
,
,
∴,
∴,
∴.
故选:.
【点睛】
本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出取最小值时图形的特点是解题关键.
函数中自变量x的取值范围是______.
【分析】
根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.
【详解】
由题意得,,
解得:-2<x≤3,
故答案为-2<x≤3.
【点睛】
本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.
已知y=1++
,则2x+3y的平方根为______.
±2
【分析】
先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
【详解】
解:由题意得,,
,
,
,
的平方根为
.
故答案为.
【点睛】
本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
若单项式﹣5x4y2m+n与2017xm﹣ny2是同类项,则m-7n的算术平方根是_________.
4
【解析】
试题分析:根据同类项定义由单项式﹣5x4y2m+n与2017xm﹣ny2是同类项,可以得到关于m、n的二元一次方程4=m﹣n,2m+n=2,解得:m=2,n=﹣2,因此可求得m﹣7n=16,即m﹣7n的算术平方根==4,
故答案为 4.
考点:1、算术平方根;2、同类项;3、解二元一次方程组
若与-3ab3-n的和为单项式,则m+n=_________.
4
【解析】
若与-3ab3-n的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n,m的值,再代入代数式计算.
【详解】
∵与-3ab3-n 的和为单项式,
∴a 2m-5 b n+1 与ab 3-n 是同类项,
∴2m-5=1,n+1=3-n,
∴m=3,n=1.
∴m+n=4.
故答案为4.
【点睛】
本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”:
(1)所含字母相同;
(2)相同字母的指数相同.
如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
150°
【分析】
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
【详解】
解:连接PQ,
由题意可知△ABP≌△CBQ
则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°
【点睛】
本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
(1)计算: ;
(2)计算: .
解方程:
(1)
(2)3x-7(x-1)=3+2(x+3)
(1)x=;(2)x=﹣
.
【分析】
(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去括号,移项合并,把x系数化为1,即可求出解.
【详解】
解:(1)方程整理得:﹣1=
,
去分母得:4﹣8x﹣12=21﹣30x,
移项合并得:22x=29,
解得:x=;
(2)去括号得:3x﹣7x+7=3+2x+6,
移项合并得:6x=﹣2,
解得:x=﹣.
【点睛】
此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.
(1)求证:;
(2)证明:∠1=∠3.
(1)证明见解析;(2)证明见解析.
【分析】
(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;
(2)先根据三角形全等的性质可得,再根据对顶角相等可得
,然后根据三角形的内角和定理、等量代换即可得证.
【详解】
(1),
,即
,
在和
中,
,
;
(2)由(1)已证:,
,
由对顶角相等得:,
又,
.
【点睛】
本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.
(1)试说明:DG∥BC;
(2)若,
,求
的度数.
(1)见解析;(2)∠3=71°.
【分析】
(1)由CD⊥AB,EF⊥AB即可得出CD//EF,从而得出∠2=∠BCD,再根据∠1=∠2即可得出∠1=∠BCD,依据“内错角相等,两直线平行”即可证出DG//BC;
(2)在Rt△BEF中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD的度数,再根据BC//DG即可得出∠3=∠ACB,通过角的计算即可得出结论.
【详解】
(1)证明:∵,
,
∴,
∴,
∵,
∴,
∴DG//BC;
(3) 解:在Rt△BEF中,
∵∠B=54°,
∴∠2=180°-90°-54°=36°,
又∵
∴∠BCD=∠2=36°.
∵ ,
∴∠BCA=∠BCD + ∠ACD = 36°+ 35°= 71° .
又∵BC//DG,
∴∠3=∠BCA = 71°.
【点睛】
本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD;(2)找出∠3=∠ACB=∠ACD+∠BCD.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.
某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:
(1)收工时检修小组在A地的哪一边,距A地多远?
(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?
(1)收工时在A地的正东方向,距A地39km;(2)需加15升.
【分析】
(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;
(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.
【详解】
(1)根据题意可得:向东走为“+”,向西走为“−”;
则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.
故收工时在A地的正东方向,距A地39km.
(2)从A地出发到收工时,
汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;
从A地出发到收工时耗油量为65×3=195(升).
故到收工时中途需要加油,加油量为195−180=15升.
【点睛】
此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.
先化简,再求值:,其中
,
.
﹣3ab2,54
【解析】
试题分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.
试题解析:原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2 ,
当a=﹣2,b=3时,原式=54
如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
【详解】
试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.
试题解析:(1)设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得
,
∴抛物线解析式为y=x2﹣3x﹣4;
(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,
∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,
代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=
,
∴存在满足条件的P点,其坐标为(,﹣2);
(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),
过P作PE⊥x轴于点E,交直线BC于点F,如图2,
∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB=PF•OE+
PF•BE=
PF•(OE+BE)=
PF•OB=
(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,
∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
考点:二次函数综合题.