已知正方形ABCD中,点E,F分别为BC,CD上的点,连接AE,BF相交于点H,且AE⊥BF.
(1)如图1,连接AC交BF于点G,求证:∠AGF=∠AEB+45°;
(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;
(3)如图3,在(2)的条件下,若点H为BM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.
解:
(1)∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∴∠ACB=∠ACD=45°,∵AE⊥BF,∴∠AEB+∠FBC=90°,∵∠FBC+∠BFC=90°∴∠AEB=∠BFC,∵∠AGF=∠BFC+∠ACF,∴∠AGF=∠AEB+45° (2)过C作CK⊥BM于K,∴∠BKC=∠AHB=90°,∵∠BMC=45°,∴CK=MK,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABH=∠BCK,∴△ABH≌△BCK(AAS),∴BH=CK=MK,AH=BK,∴BM=BK+MK=AH+BH (3)由(2)得,BH=CK=MK,∵H为BM的三等分点,∴BH=HK=KM,过E作EN⊥CK于N,∴四边形HENK是矩形,∴HK=EN=BH,∠BHE=∠ENC,∴△BHE≌△ENC(ASA),∴HE=CN=NK=1,∴CK=BH=2,∴BM=6,连接CH,∵HK=MK,CK⊥MH,∠BMC=45°,∴CH=CM,∠MCH=90°,∴∠BCH=∠DCM,∴△BHC≌△DMC(SAS),∴BH=DM=2,∠BHC=∠DMC=135°,∴∠DMB=90°,∴△BDM的面积为DM·BM=6
如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
解:(1)∵∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF (2)能,理由:∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60-4t=2t,解得t=10,∴当t=10秒时,四边形AEFD为菱形 (3)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=60-4t,即60-4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即60-4t=4t,解得t=
;③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=
s或12 s时,△DEF为直角三角形
如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.
(1)求证:BE=BF;
(2)若∠ABE=20°,求∠BFE的度数;
(3)若AB=6,AD=8,求AE的长.
解:(1)由题意得∠BEF=∠DEF.∵四边形ABCD为矩形,∴DE∥BF,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BE=BF (2)∵四边形ABCD为矩形,∴∠ABF=90°;而∠ABE=20°,∴∠EBF=90°-20°=70°;又∵∠BEF=∠BFE,∴∠BFE的度数为55° (3)由题意知BE=DE;设AE=x,则BE=DE=8-x,由勾股定理得(8-x)2=62+x2,解得x=,即AE的长为
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE=AE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
解:(1)由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠AEF=∠EAC.∵AF=CE=AE,∴∠F=∠AEF=∠EAC=∠ECA.又∵AE=EA,∴△AEC≌△EAF,∴EF=CA,∴四边形ACEF是平行四边形 (2)当∠B=30°时,四边形ACEF是菱形.理由:∠B=30°,∠ACB=90°,∴AC=AB.∵DE垂直平分BC,∴BE=CE.∵AE=CE,∴AE=BE=CE=
AB,∴AC=CE,由(1)得四边形ACEF是平行四边形,∴四边形ACEF是菱形
如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.
(1)求证:△DCA≌△EAC;
(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形,请加以证明.
解:(1)在△DCA和△EAC中,∴△DCA≌△EAC(SSS) (2)添加AD=BC,可使四边形ABCD为矩形.理由:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.∵CE⊥AE,∴∠E=90°,由(1)知△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形
本卷还有20题,登录并加入会员即可免费使用哦~
该作品由: 用户111111111分享上传
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。