下列代数式中,整式为( )
A.x+1 B. C.
D.
A【分析】直接利用整式、分式、二次根式的定义分析得出答案.
【解答】解:A、x+1是整式,故此选项正确;
B、,是分式,故此选项错误;
C、是二次根式,故此选项错误;
D、,是分式,故此选项错误;
故选:A.
如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是( )
A.原点在点A的左边 B.原点在线段AB的中点处
C.原点在点B的右边 D.原点可以在点A或点B上
B分析】根据互为相反数的两个数,它们分别在原点两旁且到原点距离相等解答.
【解答】解:∵点A、点B表示的两个实数互为相反数,
∴原点在到在线段AB上,且到点A、点B的距离相等,
∴原点在线段AB的中点处,
故选:B.
【点评】本题考查的是实数与数轴、相反数的概念,掌握互为相反数的两个数,它们分别在原点两旁且到原点距离相等是解题的关键.
下列计算正确的是( )
A.3a2﹣4a2=a2 B.a2•a3=a6 C.a10÷a5=a2 D.(a2)3=a6
【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项
D【解答】解:A、3a2﹣4a2=﹣a2,错误;
B、a2•a3=a5,错误;
C、a10÷a5=a5,错误;
D、(a2)3=a6,正确;
故选:D.
【点评】本题考查了整式的除法,单项式的乘法,合并同类项法则,是基础题,熟记运算法则是解题的关键.
如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是( )
A.45° B.55° C.65° D.75°
C【分析】根据平行线的性质和等腰直角三角形的性质解答即可.
【解答】解:∵l1∥l2,
∴∠1+∠CAB=∠2,
∵Rt△ACB中,∠C=90°,AC=BC,
∴∠CAB=45°,
∴∠2=20°+45°=65°,
故选:C.
解分式方程﹣3=
时,去分母可得( )
A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
B解:去分母得:1﹣3(x﹣2)=﹣4,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
本卷还有21题,登录并加入会员即可免费使用哦~
该作品由: 用户魏伟分享上传
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。