平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
【分析】(1)由已知代入点坐标即可;
(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;
(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
【解答】解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上
∴k=8
∴y1=
∵a=2
∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
把B(4,2),A(﹣2,﹣4)代入y2=mx+n
解得
∴y2=x﹣2
②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方
∴由图象得:2<x<4
(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO
∵O为AA′中点
S△AOB=S△AOA′=8
∵点A、B在双曲线上
∴S△AOC=S△BOD
∴S△AOB=S四边形ACDB=8
由已知点A、B坐标都表示为(a,)(3a,)
∴
解得k=6
(3)由已知A(a,),则A′为(﹣a,﹣)
把A′代入到y=
﹣
∴n=
∴A′B解析式为y=﹣
当x=a时,点D纵坐标为
∴AD=
∵AD=AF,
∴点F和点P横坐标为
∴点P纵坐标为
∴点P在y1═(x>0)的图象上
【点评】本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.
【分析】(1)与x轴相交令y=0,解一元二次方程求解;
(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.
(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.
【解答】解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2
令y=0,则x2+4x+2=0
解得x1=﹣2+,x2=﹣2﹣
抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)
(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2
∴抛物线顶点坐标为A(m,2m+2)
∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)
∴当直线1在x轴上方时
不等式无解
当直线1在x轴下方时
解得﹣3<m<﹣1
(3)由(1)
点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3
△ABO的面积S=(m+3)(﹣m)=﹣
∵﹣
∴当m=﹣时,S最大=
【点评】本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.
日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.
如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.
(1)求山坡EF的水平宽度FH;
(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?
【分析】(1)在Rt△EFH中,根据坡度的定义得出tan∠EFH=i=1:0.75==,设EH=4x,则FH=3x,由勾股定理求出EF==5x,那么5x=15,求出x=3,即可得到山坡EF的水平宽度FH为9m;
(2)根据该楼的日照间距系数不低于1.25,列出不等式≥1.25,解不等式即可.
【解答】解:(1)在Rt△EFH中,∵∠H=90°,
∴tan∠EFH=i=1:0.75==,
设EH=4x,则FH=3x,
∴EF==5x,
∵EF=15,
∴5x=15,x=3,
∴FH=3x=9.
即山坡EF的水平宽度FH为9m;
(2)∵L=CF+FH+EA=CF+9+4=CF+13,
H=AB+EH=22.5+12=34.5,H1=0.9,
∴日照间距系数=L:(H﹣H1)==,
∵该楼的日照间距系数不低于1.25,
∴≥1.25,
∴CF≥29.
答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.
【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,将实际问题转化为数学问题是解题的关键.
如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【解答】解:(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF==,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°===,
∴DO=2,
则FO=,
故图中阴影部分的面积为:﹣××3=2π﹣.
【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?
【解答】解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,
依题意得:﹣=3
解得x=200,
经检验得出:x=200是原方程的解.
所以=20.
答:原计划植树20天.
【点评】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.
本卷还有22题,登录并加入会员即可免费使用哦~
该作品由: 用户李嫣分享上传
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。