下列图形中,不是轴对称图形的是( )
A. B.
C.
D.
B
【考点】轴对称图形.
【分析】根据轴对称图形的概念对各个选项进行判断即可.
【解答】解:A、是轴对称图形,A不合题意;
B、不是轴对称图形,B符合题意;
C、是轴对称图形,C不合题意;
D、是轴对称图形,D不合题意;
故选:B.
【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.
如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是( )
A.同位角相等,两直线平行
B.同旁内角互补,两直线平行
C.内错角相等,两直线平行
D.同平行于一条直线的两直线平行
A【考点】平行线的判定与性质;余角和补角.
【分析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.
【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行,
故选A
【点评】此题考查平行线问题,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
若下列各组值代表线段的长度,以它们为边不能构成三角形的是( )
A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8
A【考点】三角形三边关系.
【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.
【解答】解:A、3+4<8,则不能构成三角形,故此选项正确;
B、6+4>9,则能构成三角形,故此选项错误;
C、15+8>20,则能构成三角形,故此选项错误;
D、8+9>15,则能构成三角形,故此选项错误;
故选:A.
【点评】此题考查了三角形的三边关系,判断能否组成三角形的简便方法是看其中较小的两个数的和是否大于第三个数即可.
下列说法错误的是( )
A.必然发生的事件发生的概率为1
B.不可能发生的事件发生的概率为0
C.不确定事件发生的概率为0
D.随机事件发生的概率介于0 和1之间
C【考点】概率的意义;随机事件.
【分析】必然发生的事件就是一定发生的事件,因而概率是1.
不可能发生的事件就是一定不会发生的事件,因而概率为0.
不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.
【解答】解:A、必然发生的事件发生的概率为1,故本选项错误;
B、不可能发生的事件概率为0,本选项错误;
C、不确定事件发生的概率>0并且<1,本选项正确;
D、随机事件发生的概率介于0和1之间,本选项错误.
故选C.
【点评】用到的知识点为:必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
在实数﹣,
,﹣
,0.23中,无理数的个数是( )个.
A.1 B.2 C.3 D.4
B【考点】无理数.
【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【解答】解:﹣,﹣
是无理数,
故选:B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
本卷还有25题,登录并加入会员即可免费使用哦~
该作品由: 用户周杨分享上传
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。